高考2021数学立体几何(2021新高考数学立体几何)

小牛学院 2024-02-27 09:28 1

新高考数学一卷立体几何不用空间向量能做吗?

可以呀。

高考2021数学立体几何(2021新高考数学立体几何)高考2021数学立体几何(2021新高考数学立体几何)


高考2021数学立体几何(2021新高考数学立体几何)


你在后面上作B3C3∥A2D2,且BB3=AA2

接着你证明B3C3∥B2C2(证明一下同位角)即可完成小题(证明平行的几何基本方法是将平行线“撞上”对注:棱锥与圆锥统称为锥体方平面,这一条你可不要告诉我你居然能不清楚哟。)

小题注意初中学的“对边相等的四边形是平行四边形”这在立体图形中是不成立的。这算是非常容易踩踏的陷阱。

第二小题几何法是难题,因为面面角的平面角没有直接出现在图上。

所以第二小题需要反过来逆转一下思维,不要去做现成的平面角,而是去想如果平面角出现了,他能出现在哪里。

因此,作PH⊥A2B2C2D2,垂足为H,H在图中几何体的后方虚空之中,我们假装找到了那个点,连接B2H

由于D2B2⊥PB2,D2B2⊥PH,因此D2B2⊥PHB2,D2B2⊥HB2

这里情况就发生了质变,由于H和A2B2C2D2共面,在同一平面内A2C2⊥B2D2,因而A2C2‖B2H(在第(2)题开始时,请先写同理可知A2B2=C2D2,并且平行,而A2D2=A2B2,因此A2B2C2D2是菱形)

过H作HT⊥A2C2,垂足为T

至此,我们做出了你二面角的补角的平面角也即∠PTH=30

显然,HT=B2O,B2O会求吗?PH则用30度角的正切得到。

同时注意到构成∠A1A2O与∠PB2H的两条射线对应平行,这两个角相同。

请问A1A2C2的余2、多项选择考试范围:解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。弦你会求吗?(余弦定理)

那你把余弦转变成正弦会吗?(必定是正数!)

求出来正弦,PH你刚刚得到了,请问PB2求出来了吗?

2021年贵州高考数学满分多少分?

【 #高考# 导语】2021年贵州高考数学满分多少分?2021年高考即将来临,很多同学们和家长朋友们都想了解2021年贵州的高考数学满分多少分。下面是由 无 为大家详细介绍一下,希望对大家有所帮助。

2021年贵州高考数学满分多少分?

问:2021年贵州高考数学满分多少分?

答: 贵州仍将采用“3+文科”或“3+理科”的传统高考模式。即,语文、数学、外语+文科综合或语文、数学、外语+理科综合的模式。

考总分均为750分。其中,语文、数学、外语满分均为150分,理科综合(物理、化学、生物)为300分;文科综合(、历史、地理)为300分。

新高考数学考试范围

结合去年新高考数学全国一卷,我们可以总结出以下考试范围:

的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率、指数与对数函数、平面向量与平面几何、函数的与导数。

解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。

③填空题考试范围

解析几何(抛物线)、数列(等或等比)、三角函数、立体几何轨迹计算。

④解答题考试范围

三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。

通过对考试范围的分析,结合之前的分值统计,我们可以得出数学考点主要集中在以下几个方面:

如何快速提高高考数学成绩直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

1、想提高数学成绩,首先要对自己的数学有一个整体的判断,比如自己在知识点上哪一块是优势,哪一块是高中数学立体几何知识2需要弥补的地方。

2、其次在发现自己薄弱处后,要在薄弱的知识点上下狠工夫,同样学习数学也需要一定的分类方法的,把一些关联的知识点结合起,做到关联学习,会事倍功半,避免盲目。但因为高中学科比较多,我们不可能每天都顾及到这门单一的学科,所以难免也会对数学的知识点有所遗忘。还有一个问题就是学生在给自己归类的时候可能会花费一些不必要的时间,这样的话我们就需要一个既节省时间又很智能的工具替我们维护这个效的学习方法。

提高数学成绩的技巧

1.背例题

这个是一个比较冷门但是效果奇好的提高数学成绩的方法。这个办法就是,遇到你不会的题目,如果怎么都做不出来,你就不用花时间弄懂它了,把它背下来,但是不要什么题都背,要背那种中等难度的题,高难的题一般以后也用不上,简单的你自己就会做。这样做一段时间,你会发现你节省了很多时间,遇到不会的题你也会往里面“套”了。

2.课后复习

高中数学一定要注意的一点就是时效性,一定要在课后及时复习,这样做的原因就是如果你隔几天在看,你会发现你的知识点已经忘记的不多了,这个时候你在复习,就产不多相当于又重新在学一次,所以“趁热打铁”这个成语同样适用于高中数学的学习。其次,我们复习过得知识也不是一劳永逸的,每周、每个月都总结一下。这样有利于形成我们的知识网络,更加方便记忆。

21年广东高考数学难吗

21年广东高考数学难。

21年高考数学稳中有变,助力应试教育。在整体平稳的基础上,在主观题的设计上进行了适当的调整。主观题在各部分内容的布局和考查难度上进行动态设计,打破了过去压轴题的惯例。

广东高考2021年使用的是全国1卷。

理科Ⅰ卷第(15)题、理科Ⅱ卷第(18)题分别引入了非常普及的乒乓球和篮球运动,以其中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学方法分析、解决体育问题。

文科Ⅰ卷第(6)题设置了学校对学生体质状况进行调查的情境,考查学生的抽样调查知识。这些试题在考查学生数学知识的同时,学生加强体育锻炼,体现了对学生的体育教育。

结合学科知识,展示数学之美。文、理科Ⅱ卷第(16)题融入了悠久的金石文化,赋以几何体真实背景,文、理科Ⅰ卷第(4)题以03 试卷变化的雕塑“断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。

理论联系实际,劳动教育。文科Ⅰ卷第(17)题以商场服务质量管理为背景设计,体现对服务质量的要求,倡导高质量的劳动成果。文、理科Ⅲ卷第(16)题再现了学生到工厂劳动实践的场景,学生关注劳动、尊重劳动、参加劳动,体现了劳动教育的要求。

固本强基,夯实发展基础。试卷注重对高中基础内容的全面考查,、复数、常用逻辑用语、线性规划、平面向量、算法、二项式定理、排列组合等内容在选择题、填空题中得到了有效的考查。

在此基础上,试卷强调对主干内容的重点考查,体现了全面性、基础性和综合性的考查要求。在解答题中重点考查了函数、导数、三角函数、概率统计、数列、立体几何、直线与圆锥曲线等主干内容。

202.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。21年的数学试题还注重考查数学应用素养,体现综合性和应用性的考查要求。理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置了排列组合试题,体现了古代的哲学思想。

高考数学六道大题是什么题型

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

高考数学六道大题的题型是:三角函数,概率,立体几何第三,数列,函数,数列,解析几何。

1、三角函数。是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的与一个比值的的变量之间的映射。

2、概率。它是反映随机出现的可能性大小。随机是指在相同条件下,可能出现也可能不出现的。

3、立体几何。是3维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。

4、函数。数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从、映射的观点出发。

5、数列。是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。

6、解析几何。是一种借助于解析式进行图形研究的几何学分支。

学习数学重要性:

1、数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。

2、数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑。

3、生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子。

高考数学中的立体几何题怎样建立坐标系?

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

如果涉及到长方体、正方体等有现成的三面两两垂直的,就直接以后面、左侧面和底面为准来建立空间直角坐标系,如果不是正的,那就找出和他们两两垂直的面,一般来说,考到三角形的中位线的多一些,就找出三角形的高和其他的线来构2021年的数学试题贯彻落实高考评价体系学科化的具体要求,突出学科素养导向,将理性思维作为重点目标,将基础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和逻辑推理能力。成两两垂直的立体坐标系!

这个问题不好回答 这个是要看题目的 立体几何坐标系一般要以简化运算为前提来建立 因为现在的立体几何题目比较中性了 不比以前的 其实现在的立体几何题目用解析几何的方法去做说不定更简单 主要是辅助线的作法比较难想 一般建立坐标系来解题主要是运用向量来运算的 所以尽量将需要运算的点放到坐标轴上 这样会比较简化运算的 运算起来也是比较方便的

看具体的图形,怎样简单就怎么建立,尽量找直角,点的坐标好表示的位置建立

2021新高考数学内容变化

6、统计5分

随着新高考适应性考试开考,我省也正式进入不分文理科的“新高考时代”。往年高考数学科目都是分文理科的,但从此次考试开始将不再分科,考生要如何适应这些变化?

数学考卷新的特点及变化

主要是多选题评分规则的改变,这与2020年高考Ⅰ卷相比多选题由原来部分选对得3分改为选对得2分,减少了考生得分的投机性;不再画“重点”,增大了知识的覆盖面;与高等数学多点衔接,为高等数学学习做好铺垫;同时出现了新型试题,如逻辑推理题、结论开放性试题,进一步明确逻辑推理素养的重要性和数学知识积累的必要性;另外还体现了跨学科知识的融合,加强了学科知识之间的渗透。

八省联考新高考适应性数学考试

整份卷子有几个不变:

1.数学问题的表述依然简洁常规;

2.难点还是圆锥曲线+函数+导数;

3.依旧传承“在知识交汇处命题”,“以能力立意为主”,突出主干;

几个重要变化:

13.法.竟然没有送分题,刷题也没用;生真不好过…

2.多选题题由原来的部分选对得3分调整为2分(广东仍为3分);靠猜也不行了,更加要求全面性,基础性…

3.立体几何无论大题还是小题不按原来套路出题,高考不再划“重点”,“敲黑板”了(高考与中考将取消考试大纲,将以课程标准为依据);按教辅上课学校和买几本书上课老师会很难看…

4.命题理念从“知识立意,能力立意”向“价值,素养导向,能力为重,知识为基”转变,在多角度,多层次考查基础知识基础上,注重了对数学思想方法,数学能力和数学核心素养的考查,展示了数学的科学价值与人文价值,同时兼顾了试题基础性.,创新性和和综合性…

5.创新点多,亮点多,出现一个开放性填空题

高考数学最难的是什么? 立体几何么?

立体几何不难,最难的是圆锥曲线和导数,高二学。

立体几何看似难,但理解好了,习惯了就不难了,高考不占太大分值,考可总曲率=见,本题考查的属于:基本概念和基本方法。的相对简单

圆锥曲线和导数才是决定命运的关键

最难的当然是函数啦,各种函数。。。立体几何技巧就是多练吧,多练练空间想象力就会比较强

函数,导函数,圆锥曲线,当然还有一些立体几何题出现在了选择题或者填空题一道,这样的立体几何题是比较难的,不过“一般情况”下只要选择题前11道都会做,一道不用做也能秒选了

立体几何最难 圆 椭圆 双曲线其次。导数也很难,但是那道题可以战略性放弃。倒数基础题比前面这两个简单太多了

立体几何是最简单的。。分一定要拿到!难的应该是圆锥曲线导数吧

立体几何是高中最简单的,比初中的平面几何还简单,平面向量才是最难的!

高考数学知识点2023

(2)若多面体满足∶ 顶点数-棱数+面数=2,证明∶ 这类多面体的总曲率是常数.

高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅!

高中数学各知识点公式定理记忆口诀

与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。

三角函数

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。

公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

不等式

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的 方法 ,实数性质威力大。求与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

数列

等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

复数

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。

立体几何

点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

平面解析几何

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。

笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三数学 复习重要知识点

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

知识点2

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

在命题的条件和结论间的关系判断有困难时,可从的角度考虑,记条件p、q对应的分别为A、B,则:

三、知识扩展

1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

高考数学复习重点 总结

,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二,平面向量和三角函数

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

第六,解析几何

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七,押轴题

高考数学知识点2023相关 文章 :

★ 2021年数学高考知识点

★ 高中数学知识点总结归纳知识点1

★ 高考数学知识点大全

★ 高考数学知识点总结归纳

★ 高考数学知识点归纳整理

★ 高考数学知识点总结整理

★ 2020高考数学知识点总结大全

★ 高考数学必考知识点整理

★ 2020高考数学知识点大全

★ 2020高考文科数学知识点

求数学学霸告诉我怎么学好高中几何部分啊,我本来必修一函数学得不错,但到了必修二立体几何那些概念理解

怎样学好高中数学—立体几何

高中数学立体几何一直是数学的一大难点。因为它要求学生有立体感,在一个平面内把几何图形的立体感想象出来。怎样才能学好立体几何呢?请看我的经验。

步骤/方法

1 要建立空间观念,提高空间想象力。

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。

2第二要掌握基础知识和基本技能。

要用图形、文字、符号三种形式表达概念、定理、公式,要及时不断地复习前面学过的内容。这是因为《立体几何》内容前后联系紧密,前面内容是后面内容的根据,后面内容既巩固了前面的内容,又发展和推广了前面内容。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交待清楚,自己心中有数而不把它写出来是不行的。要学会用图(画图、分解图、变换图)帮助解决问题;要掌握求各种角、距离的基本方法和推理证明的基本方法——分析法、综合法、反证法。

3第三要不断提高各方面能力。

通过联系实际、观察模型或类比平面几何的结论来提出命题;对于提出的命题,不要轻易肯定或否定它,要多用几个特例进行检验,做到否定举出反面例子,肯定给出证明。欧拉公式的内容是以研究性课题的形式给出的,要从中体验创造数学知识。要不断地将所学的内容结构化、系统化。所谓结构化,是指从整体到局部、从高层到低层来认识、组织所学知识,并领会其中隐含的思想、方法。所谓系统化,是指将同类问题如平行的问题、垂直的问题、角的问题、距离的问题、惟一性的问题集中起来,比较它们的异同,形成对它们的整体认识。牢固地把握一些能统摄全局、组织整体的概念,用这些概念统摄早先偶尔接触过的或是未察觉出明显关系的已知知识间的联系,提高整体观念。

要注意积累解决问题的策略。如将立体几何问题转化为平面问题,又如将求点到平面距离的问题,或转化为求直线到平面距离的问题,再继而转化为求点到平面距离的问题;或转化为体积的问题。要不断提高分析问题、解决问题的水平:一方面从已知到未知,另方面从未知到已知,寻求正反两个方面的知识衔接点——一个固有的或确定的数学关系。要不断提高反省认知水平,积极反思自己的学习活动,从经验上升到自动化,从感性上升到理性,加深对理论的认识水平,提高解决问题的能力和创造性。

注意事项

一、立足课本,夯实基础

(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

(2)培养空间想象力。

(3)得出一些解题考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。方面的启示。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

二、培养空间想象力

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

三、逐渐提高(1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台.逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。

四、“转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

五、总结规律,规范训练

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。

还要注重规范训练,高考中反映的这方面的问题十分,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

六、典型结论的应用

在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出。

版权声明:本文仅代表作者观点,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 b19126499425@163.com,本站将立刻删除

下一篇 :